Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[4-(4,5-Dihydro-1 H-pyrrol-2-yl)-phenyl]-4,5-dihydro-1H-imidazole

Reza Kia, ${ }^{\text {a }}$ Hoong-Kun Fun ${ }^{\text {a* }}$ and Hadi Kargar ${ }^{\text {b }}$
${ }^{\text {ax }}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
Correspondence e-mail: hkfun@usm.my

Received 15 November 2008; accepted 17 November 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.041 ; w R$ factor $=0.116$; data-to-parameter ratio $=12.8$.

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}$, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7) ${ }^{\circ}$. In the crystal structure, neighbouring molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into onedimensional infinite chains forming 18 -membered rings with $R_{2}^{2}(18)$ motifs. The crystal structure is further stabilized by weak intermolecular $\pi-\pi$ stacking [centroid-centroid distance $=3.8254$ (6) \AA] and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure and synthesis, see: Stibrany et al. (2004). For applications, see: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey \& Grogan (1999).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}$
$\gamma=94.207(2)^{\circ}$
$M_{r}=214.27$
Triclinic, $P \overline{1}$
$a=4.8863(2) \AA$
$b=5.1472$ (2) \AA
$c=10.2295$ (4) A
$V=247.52(2) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
$0.56 \times 0.17 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.950, T_{\text {max }}=0.986$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.116$
$S=1.07$
1296 reflections

4616 measured reflections 1296 independent reflections 1208 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

101 parameters
All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 2 / \mathrm{C} 3$ imidazoline ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.87(2)$	$2.18(2)$	$3.0060(13)$	$158.1(15)$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots C g 1^{1 i}$	$1.015(15)$	$2.980(15)$	$3.8882(11)$	$149.6(11)$
Symmetry codes: (i) $x, y-1, z ;$ (ii) $-x,-y+1,-z+1$				

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/ PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/ 811012).

[^0]
References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blancafort, P. (1978). Drugs Fut. 3, 592-592.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, S. (1993). Clin. Sci. 85, 671-677.
Corey, E. J. \& Grogan, M. J. (1999). Org. Lett. 1, 157-160.
Li, H. Y., Drummond, S., De Lucca, I. \& Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2004). Acta Cryst. E60, o5270529.

Ueno, M., Imaizumi, K., Sugita, T., Takata, I. \& Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.
Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.

supplementary materials

2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)phenyl]-4,5-dihydro-1H-imidazole

R. Kia, H.-K. Fun and H. Kargar

Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including anti-hypertensive (Blancafort 1978), anti-hyperglycemic (Chan 1993), anti-depressive (Vizi 1986), anti-hypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) activities. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey \& Grogan 1999). In consideration of the important applications of imidazolines, herein the crystal structure of the title compound, (I), is reported.

In compound (I), Fig. 1, bond lengths and angles are within the normal ranges and are comparable with a related structure (Stibrany et al., 2004). The molecule lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form 18membered rings producing $R_{2}{ }^{2}(18)$ ring motifs to link molecules into one-dimensional infinite chains along the b-axis, Table 1 and Fig. 2. The crystal structure is further stabilized by weak intermolecular $\pi-\pi$ stacking $\left[C g 1 \cdots C g 2^{\mathrm{i}}=3.8254\right.$ (6) \AA; (i) $1+x, y, z]$ and $\mathrm{C}-\mathrm{H} \cdots \pi(C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 2 / \mathrm{C} 3$ imidazoline ring and the benzene ring, respectively) interactions, Table 1.

Experimental

The synthetic method used for the preparation of (I) was based on previous work (Stibrany et al. 2004), except that 1,4-dicyanobenzene (10 mmol) and ethylenediamine (40 mmol) were used. Single crystals suitable for X-ray diffraction were obtained by evaporation of a methanol solution of (I) held at room temperature.

Refinement

All hydrogen atoms were located from a difference Fourier map and refined freely: $\mathrm{C}-\mathrm{H}$ ranged from 0.961 (16) to 1.015 (15) \AA and $\mathrm{N} — \mathrm{H}$ was 0.874 (18) \AA.

Figures

Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for nonH atoms. Unlabelled atoms are related by $-x+1,-y,-z$.

supplementary materials

Fig. 2. Partial crystal packing in (I), viewed down the a-axis showing one-dimensional infinite chains along the b-axis mediated by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (dashed lines).

2-[4-(4,5-Dihydro-1 H-pyrrol-2-yl)-phenyl]-4,5-dihydro-1H-imidazole

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}$
$M_{r}=214.27$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=4.8863(2) \AA$
$b=5.1472(2) \AA$
$c=10.2295(4) \AA$
$\alpha=104.414$ (2) ${ }^{\circ}$
$\beta=93.885$ (2) ${ }^{\circ}$
$\gamma=94.207(2)^{\circ}$
$V=247.522(17) \AA^{3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100.0(1) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.950, T_{\text {max }}=0.986$
4616 measured reflections

$$
\begin{aligned}
& Z=1 \\
& F_{000}=114 \\
& D_{\mathrm{x}}=1.437 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 312 \mathrm{~K} \\
& \text { Mo Ka radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3789 \text { reflections } \\
& \theta=2.5-30.3^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=100.0(1) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.56 \times 0.17 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

1296 independent reflections

1208 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=29.0^{\circ}$
$\theta_{\text {min }}=4.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.116$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0717 P)^{2}+0.0714 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

$S=1.07$

1296 reflections
101 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.99649(17)$	$0.02202(18)$	$0.30177(9)$	$0.0140(2)$
N2	$1.05027(18)$	$0.42785(18)$	$0.25064(9)$	$0.0161(2)$
C1	$1.2376(2)$	$0.1595(2)$	$0.39310(10)$	$0.0148(2)$
C2	$1.2547(2)$	$0.4433(2)$	$0.36664(10)$	$0.0158(2)$
C3	$0.92585(19)$	$0.1869(2)$	$0.21989(10)$	$0.0124(2)$
C4	$0.70754(19)$	$0.08912(19)$	$0.10716(10)$	$0.0124(2)$
C5	$0.6787(2)$	$0.2263(2)$	$0.00581(10)$	$0.0138(2)$
C6	$0.5270(2)$	$-0.1391(2)$	$0.09997(10)$	$0.0135(2)$
H1A	$1.402(3)$	$0.062(3)$	$0.3667(15)$	$0.020(3)^{*}$
H1B	$1.212(3)$	$0.169(3)$	$0.4906(16)$	$0.024(4)^{*}$
H2A	$1.443(3)$	$0.498(3)$	$0.3429(16)$	$0.026(4)^{*}$
H2B	$1.214(3)$	$0.587(3)$	$0.4488(15)$	$0.020(3)^{*}$
H5	$0.802(3)$	$0.383(3)$	$0.0096(16)$	$0.025(4)^{*}$
H6	$0.537(3)$	$-0.239(3)$	$0.1687(15)$	$0.020(3)^{*}$
H1N1	$0.989(3)$	$-0.151(4)$	$0.2656(17)$	$0.029(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0135(4)$	$0.0131(4)$	$0.0147(4)$	$-0.0009(3)$	$-0.0033(3)$	$0.0041(3)$
N 2	$0.0147(4)$	$0.0150(4)$	$0.0177(5)$	$-0.0009(3)$	$-0.0044(3)$	$0.0047(3)$
C 1	$0.0125(4)$	$0.0157(5)$	$0.0153(5)$	$-0.0008(3)$	$-0.0030(3)$	$0.0037(4)$
C 2	$0.0144(5)$	$0.0153(5)$	$0.0167(5)$	$-0.0011(4)$	$-0.0038(3)$	$0.0041(4)$
C 3	$0.0102(4)$	$0.0142(5)$	$0.0130(4)$	$0.0015(3)$	$0.0006(3)$	$0.0036(3)$
C 4	$0.0098(4)$	$0.0134(5)$	$0.0133(4)$	$0.0009(3)$	$0.0000(3)$	$0.0025(3)$
C 5	$0.0109(4)$	$0.0143(5)$	$0.0159(5)$	$-0.0009(3)$	$0.0001(3)$	$0.0041(3)$

C 6	$0.0128(4)$	$0.0140(5)$	$0.0142(5)$	$0.0002(3)$	$0.0003(3)$

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 3$	$1.3780(13)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4700(12)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$0.874(18)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.2944(13)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.4808(12)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.5479(14)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	$0.997(14)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	$1.004(16)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$1.006(16)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$107.38(8)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$118.4(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$119.9(10)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$106.43(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$102.00(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	$108.9(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	$112.8(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	$112.3(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	$111.4(9)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	$109.3(12)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$106.30(8)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$109.2(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$111.9(9)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$110.6(8)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$9.79(10)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$3.06(11)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-7.84(10)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$3.71(12)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.17(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$-9.24(12)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$173.53(8)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$17.82(14)$
S 5	

C2-H2B	1.015 (15)
C3-C4	1.4787 (13)
C4-C5	1.3973 (14)
C4-C6	1.4000 (14)
C5-C6 ${ }^{\text {i }}$	1.3881 (13)
C5-H5	0.961 (16)
C6-C5 ${ }^{\text {i }}$	1.3881 (13)
C6-H6	0.970 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	112.1 (9)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	106.8 (12)
N2-C3-N1	116.89 (9)
N2-C3-C4	123.28 (9)
N1-C3-C4	119.77 (9)
C5-C4-C6	118.99 (9)
C5-C4-C3	119.82 (9)
C6-C4-C3	121.19 (9)
C6 ${ }^{\text {i }}$ C5- 4	120.61 (9)
C6- ${ }^{\text {i }} 5$ - H 5	119.7 (9)
C4-C5-H5	119.6 (9)
C5 ${ }^{\text {i }}$ C6- 4	120.40 (9)
C5 ${ }^{\text {i }}$ - 6 - H 6	117.6 (9)
C4-C6-H6	122.0 (9)
N1-C3-C4-C5	-165.14 (9)
N2-C3-C4-C6	-161.93 (10)
N1-C3-C4-C6	15.11 (14)
C6-C4-C5-C6 ${ }^{\text {i }}$	0.46 (16)
C3-C4-C5-C6 ${ }^{\text {i }}$	-179.29 (8)
C5-C4-C6-C5 ${ }^{\text {i }}$	-0.46 (16)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 5{ }^{\text {i }}$	179.29 (8)

Symmetry codes: (i) $-x+1,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.87(2)$	$2.18(2)$	$3.0060(13)$	$158.1(15)$
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	$1.015(15)$	$2.980(15)$	$3.8882(11)$	$149.6(11)$

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x,-y+1,-z+1$.

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2331).

